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Abstract

Here, free vibrations and transient dynamic response analyses of laminated cross-ply oval cylindrical
shells are carried out. The formulation is based on higher order theory that accounts for the transverse
shear and the transverse normal deformations, and includes zig-zag variation in the in-plane displacements
across the thickness of the multi-layered shells. The contributions of inertia effect due to in-plane and
rotary motions, and the higher order function arising from the assumed displacement models are included.
The governing equations obtained using Lagrangian equations of motion are solved through finite element
approach. A detailed parametric study is conducted to bring out the influence of different shell geometry,
ovality parameter, lay-up and loading environment on the vibration characteristics related to different
modes of vibrations of oval shell.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laminated composite cylinders are increasingly used as load-carrying elements in modern
engineering systems. This is especially true of the aerospace, nuclear, marine, petrochemical,
biomedical and construction industries, where dramatic and sophisticated uses are currently being
made of shells in flight vehicles, nuclear reactor vessels, deep submersibles, refinery and
biomedical equipment, and roofs for industrial buildings. Furthermore, fiber-reinforced
composites provide high specific strength and stiffness, as well as the ability to tailor these
parameters for achieving minimal weight. Although circular cylindrical shell is a simple structural
component, the cross-section of such cylinders may become non-circular either due to the
fabrication process or due to the design considerations, for example, non-circular structural
components in aerospace and submersible systems. This may lead to the increase in the level of
geometrical complexities. The analysis of such cylinders is important because the out of roundness
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may adversely affect the vibration characteristics. Thus, studies concerning composite non-
circular cylindrical shells have gained importance recently in the literature.
The vibration analysis of shells of revolution has received considerable attention in the

literature and has been reviewed by Leissa [1], Noor [2], Noor and Burton [3], Qatu [4] and
Soldatos [5]. Recently, the study pertaining to non-circular cylindrical shells has been reviewed
and well documented by Soldatos [6]. It can be concluded that the number of studies that deal
with the dynamic characteristics of non-circular shells is rather limited, and it is due to the
difficulty introduced in governing equations because of the cross-sectional radius of curvature as a
function of an arc co-ordinate. It can be further opined from the literature that few contributions
are available concerning with the free vibration analysis of anisotropic laminated non-circular
cylindrical shells compared to those of isotropic case and they are cited here. Using the classical
theory, Soldatos and Tzivanidis [7], Soldatos [8], Hui and Du [9], and Suzuki et al. [10] have
studied the vibration characteristics of thin laminated non-circular shells through analytical
methods. Donnell- and Flugge-type shell theories have been employed in the work of Soldatos
and Tzivanidis [7] and Soldatos [8], respectively, and the solutions are obtained using the method
of Galerkin. Hui and Du [9] have analyzed the effect of geometric imperfection on non-circular
shells by introducing Donnell-type shell theory and adopting Galerkin’s method for solving
the governing equations. Suzuki et al. [10] have applied Love-type shell theory in conjunction
with power method. Noor [11], Kumar and Singh [12], and Suzuki et al. [13] have introduced
first order shear deformation theory (FSDT) for analyzing such structures. Noor [11] has
solved the problem using Sanders–Koiter shell theory and multilocal difference discretization
method, while Kumar and Singh [12] have employed Bezier functions technique to Love-type
shell theory. Suzuki et al. [13] have obtained the solutions using power method. The study
employing parabolic shear deformation theory is attempted for isotropic case in the work of
Soldatos [14]. However, the analyses concerning forced vibrations of non-circular laminated
cylindrical shells seem to be scarce in the literature, except the work of Cheung [15] that is
concerned with thin isotropic shells based on Donnell-type classical theory in conjunction with the
finite strip method.
It is evident from the literature that first order theory can predict fairly accurate results for the

estimation of global behaviors of laminates like deflection, fundamental frequency and buckling
load, etc. However, it is inadequate for the accurate estimation of higher order frequencies, mode
shapes, large deflections and distribution of stresses. This has necessitated the introduction of
higher order function in the displacement model and layerwise theory for the study of laminated
plates and circular cylindrical shells [16–22]. To the authors’ knowledge, the studies based on
higher order models appear to be scarce in the literature for the analysis of non-circular cylindrical
shells.
In the present work, the free vibration characteristics, and forced vibration responses of oval

cylindrical shells subjected to thermal/mechanical loads based on finite element procedure are
studied by extending the higher order displacement model including zig-zag theory and the
variable transverse displacement through the thickness [23,24]. The formulation includes all the
inertia terms, due to the parts resulting from the first order model, the higher order displacement
function, and the coupling between the different order displacements. The accuracy of the present
model is tested against the available analytical/numerical solutions. A detailed parametric study is
carried out to highlight the influence of non-circularity/ovality parameter, thickness and
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slenderness ratios and lay-up on the natural frequencies, and forced vibration characteristics of
laminated composite oval shells.

2. Formulation

A laminated composite non-circular cylindrical shell is considered with the co-ordinates x along
the meridional direction, y along the circumferential direction and z along the thickness direction
having origin at the mid-plane of the shell as shown in Fig. 1. Based on Taylor’s series expansion
method for deducing the two-dimensional formulation of a three-dimensional elasticity problem,
the in-plane displacements uk and vk; and the transverse displacement wk for the kth layer, are
assumed as (a list of nomenclature is given in Appendix B).

ukðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zyxðx; y; tÞ þ z2bxðx; y; tÞ þ z3fxðx; y; tÞ þ Skcxðx; y; tÞ;

vkðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zyyðx; y; tÞ þ z2byðx; y; tÞ þ z3fyðx; y; tÞ þ Skcyðx; y; tÞ;

wkðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zw1ðx; y; tÞ þ z2Gðx; y; tÞ: ð1Þ

Here, u0; v0; w0 are the displacements of a generic point on the reference surface; yx; yy are the
rotations of normal to the reference surface about the y- and x-axis, respectively; w1; bx; by; G; fx;
fy are the higher order terms in the Taylor’s series expansions, defined at the reference surface. cx

and cy are the generalized variables associated with the zig-zag function, Sk:
The zig-zag function, Sk; as given in the work of Murakami [25], is defined by

Sk ¼ 2ð�1Þkzk=tk; ð2Þ

where zk is the local transverse co-ordinate with its origin at the center of the kth layer and tk is
the corresponding layer thickness. Thus, the zig-zag function is piecewise linear with values of �1

Fig. 1. Generalized co-ordinate system and cross-sectional details of the oval shell.
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and 1 alternately at the different interfaces. The ‘zig-zag’ function, as defined above, takes care of
the inclusion of the slope discontinuity of u and v at the interfaces of the laminate as observed in
exact three-dimensional elasticity solutions of thick laminated composite structures. The use of
such function is more economical than a discrete layer approach of approximating the
displacement variations over the thickness of each layer separately. Although both these
approaches account for slope discontinuity at the interfaces, in the discrete layer approach the
number of unknowns increases with the increase in the number of layers, whereas it remains
constant in the present approach.
The strains in terms of mid-plane deformation, rotations of normal, and higher order terms

associated with displacements for kth layer are as

feg ¼
ebm

es

( )
�

%et

0

( )
: ð3Þ

The vector febmg includes the bending and membrane terms of the strain components and vector
fesg contains the transverse shear strain terms. These strain vectors can be defined as

ebm

eS

( )
¼

exx

eyy

ezz

gxy

gxz

gyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

uk
;x

ðvk
;y þ wk=RÞ=ð1þ z=RÞ

wk
;z

uk
;y=ð1þ z=RÞ þ vk

;x

uk
;z þ wk

;x

vk
;z þ ðwk

;y � vk=RÞ=ð1þ z=RÞ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; ð4aÞ

where R; the principal radii of curvature in the circumferential direction, is the function of
circumferential co-ordinate y: The variation of R in the circumferential direction depends on the
type of cross-section, i.e., for instance, for oval cross-section, the variable curvature R can be
described as

Ro=R ¼ 1þ x cosð2y=RoÞ; ð0pxp1Þ; ð4bÞ

where x and y are non-circularity/ovality parameter and the circumferential cordinate,
respectively. Ro is the average radius of curvature of the middle surface and is equal to C=2p;
C is the total circumferential length of the oval shell.
Using the kinematics given in Eq. (1), Eq. (4a) can be rewritten as

ebm

es

( )
¼ ½ %Z	f e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 g

T; ð5aÞ

where

½ %Z	 ¼
Z1 Z2 Z3 Z4 Z5 O1 O1 O1 O1 O2

OT
1 OT

1 OT
1 OT

1 OT
2 Z6 Z7 Z8 Z9 Z10

" #
: ð5bÞ

The various submatrices involved in Eq. (5) are given in Appendix A.
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The subscript comma denotes the partial derivative with respect to the spatial co-ordinate
succeeding it.
The thermal strain vector f%etg is represented as

f%etg ¼

%exx

%eyy

%ezz

%exy

%exz

%eyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ DT

ax

ay

az

axy

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð5cÞ

where DT is the rise in temperature and is generally represented as the function of x; y and z: ax;
ay; az and axy are thermal expansion coefficients in the shell co-ordinates and can be related to the
thermal coefficients (a1; a2 and a3) in the material principal directions.
The constitutive relations for an arbitary layer k; in the laminated shell (x; y; z) co-ordinate

system can be expressed as

fsg ¼ f sxx syy szz txy txz tyz g
T

¼ ½ %Qk	f exx � %exx eyy � %eyy ezz � %ezz gxy � %gxy gxz gyz g
T; ð6Þ

where the terms of ½ %Qk	 matrix of kth ply are referred to the laminated shell axes and can be
obtained from the ½Qk	 corresponding to the fiber directions with the appropriate transformation,
as outlined in the literature [26]. fsg; feg and f%etg are stress, strain, and thermal strain vectors due
to rise in temperature, respectively. The superscript T refers to transpose of a matrix/vector.
The governing equations are obtained by applying Lagrangian equations of motion given by

d=dt½qðT � UT Þ=@’di	 � ½qðT � UT Þ=qdi	 ¼ 0; i ¼ 1 to n; ð7Þ

where T is the kinetic energy; UT is the total potential energy consisting of strain energy
contributions due to the in-plane and transverse stresses, and work done by the externally applied
mechanical loads, respectively. fdg ¼ fd1; d2;y; di;y; dng

T is the vector of the degrees of
freedom/generalized co-ordinates. A dot over the variables represents the partial derivative with
respect to time.
The kinetic energy of the plate is given by

Tð’dÞ ¼
1

2

Z Z XN

k¼1

Z hkþ1

hk

rk

Z
f ’uk ’vk ’wk gf ’uk ’vk ’wk gT 1þ

z

R

� �
dz	 dx dy; ð8Þ

where rk is the mass density of the kth layer. hk; hkþ1 are the z co-ordinates of laminate
corresponding to the bottom and top surfaces of the kth layer.
Using the kinematics given in Eq. (1), Eq. (8) can be rewritten as

Tð’dÞ ¼
1

2

Z Z XN

k¼1

Z hkþ1

hk

rkf ’d
egT½Z	T½Z	f ’deg 1þ

z

R

� �
dz	 dx dy; ð9Þ
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where f ’degT ¼ f ’u0 ’v0 ’w0
’yx

’yy ’w1
’bx

’by
’G ’fx

’fy
’cx

’cy g and

½Z	 ¼

1 0 0 z 0 0 z2 0 0 z3 0 Sk 0

0 1 0 0 z 0 0 z2 0 0 z3 0 Sk

0 0 1 0 0 z 0 0 z2 0 0 0 0

2
64

3
75:

The potential energy functional UT is given by

UT ðdÞ ¼
1

2

Z Z XN

k¼1

Z hkþ1

hk

fsgTe 1þ
z

R

� �
dz

" #
dx dy �

Z Z
qw dx dy; ð10Þ

where q is the distributed force acting on the bottom surface of the shell.
For obtaining the element level governing equations, the kinetic and the total potential energies

may be conveniently written as

TðdeÞ ¼ 1
2
f’degT½Me	f’deg; ð11Þ

UT ðd
eÞ ¼ 1

2
fdegT½Ke	fdeg � fdegTfFe

Tg � fdegTfFe
Mg

þ
1

2

Z Z XN

k¼1

Z hkþ1

hk

f%etg
T½ %Q	f%etg 1þ

z

R

� �
dz

" #
dx dy: ð12Þ

The elemental mass and stiffness matrices, and thermal/mechanical load vectors involved in
Eqs. (11) and (12) can be defined as

½Me	 ¼
Z Z XN

k¼1

Z hkþ1

hk

rkfHgT½Z	T½Z	fHg 1þ
z

R

� �
dz

" #
dx dy; ð13Þ

½Ke	 ¼
Z Z XN

k¼1

Z hkþ1

hk

B½ 	T %Z
� �T %Qk

� �
%Z

� �
B½ 	 1þ

z

R

� �
dz

" #
dx dy; ð14Þ

fFe
Tg ¼

Z Z XN

k¼1

Z hkþ1

hk

B½ 	T %Z
� �T %Qk

� �
%etf g 1þ

z

R

� �
dz

" #
dx dy;

and

fFe
Mg ¼

Z Z
fHwg

Tq dx dy: ð15Þ

Here fdeg is the vector of the elemental degrees of freedom/generalized co-ordinates, and ½H	 and
½B	 are the interpolation and strain matrices pertaining to the element, respectively.
Substituting Eqs. (11) and (12) in Eq. (7), one obtains the governing equation for the element as

½Me	f.deg þ ½Ke	fdeg ¼ fFe
Tg þ fFe

Mg: ð16Þ

The coefficients of mass and stiffness matrices, and the load vectors involved in governing Eq. (16)
can be rewritten as the product of term having thickness co-ordinate z alone and the term
containing x and y: In the present study, while performing the integration, terms having thickness
co-ordinate z are explicitly integrated, whereas the terms containing x and y are evaluated using
full integration with 5
 5 points Gauss integration rule.
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Following the usual finite element assembly procedure [27], the governing equation for the
forced/free response of the laminated shell are obtained as

½M	f.dg þ ½K 	fdg ¼ fFTg þ fFMg ðForced vibrationÞ; ð17aÞ

½M	f.dg þ ½K 	fdg ¼ f0g ðFree vibrationÞ; ð17bÞ

where ½M	 and ½K 	 are the global mass and stiffness matrices. fFTg and fFMg are the global
thermal and mechanical load vectors, repectively.
The solutions of Eqs. (17a) and (17b) can be obtained using Newmark’s direct time integration

method and standard eigenvalue extraction procedures, respectively.

3. Element description

In the present work, a simple C0 continous, eight-noded serendipity quadrilateral shear flexible
shell element (HSDT) with 13 nodal degrees of freedom (u0; v0; w0; yx; yy; w1; bx; by; G; fx; fy; cx

and cy: 13 d.o.f.) developed based on field consistency approach [28] is employed.
If the interpolation functions for an eight-noded element are used directly to interpolate the 13

field variables u0;y;cy in deriving the membrane and shear strains, the element will lock and
show oscillation in the membrane and shear stresses. Field consistency requires that the
membrane and the transverse shear strains must be interpolated in a consistent manner, as
outlined in Ref. [28]. This is achieved here by smoothing the original interpolation functions in a
least-squares accurate fashion to the desired form, i.e., the functions that are consistent with the
derivative functions. Here, we need smoothed functions for w0 term and the terms (yx and yy)
which are consistent with the interpolations for v0;y; and (w0;x and w0;y) to substitute in the
membrane strain expression fe1g given in Eq. (A.2), and in the transverse shear strain definition
fe6g given in Eq. (A.3), respectively. It can be noted that v0;y; and (w0;x and w0;y) are of the
quadratic form in x and y; respectively, as the original interpolation function for any field variable
is of cubic type for the eight-noded element chosen here. This means that the smoothed functions
that must be derived for w0 term and the terms (yx and yy) by smoothing the original interpolation
function, be consistent with the derivative functions, v0;y; and (w0;x and w0;y), respectively. The
element thus derived is tested for its basic properties and is found free from the rank deficiency,
shear/membrane locking, and poor convergence syndrome [29].

4. Results and discussion

The analysis, here, is concerned with the free vibration characteristics and transient dynamic
responses of simply supported oval cross-ply cylindrical shells. Since the higher order theory, in
general, is required for the accurate analysis of thick composite structures, the emphasis in the
present work is placed on the laminated shells with thickness ratios Ro=hp20: As the element
employed here is based on the field consistent approach, all the strain energy terms are calculated
using exact numerical integration scheme. The influence of various parameters such as thickness
and length ratios (Ro=h and L=Ro), ovality parameter (x) and number of layers (N) on the
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non-dimensional natural frequencies corresponding to various nominal circumferential wave
numbers %n (defined based on the criterion suggested in Ref. [30]) corresponding to different types
of vibration modes of shells is examined. It can be noted here that unlike the circular case, the
conventional manner of describing the mode based on number of crossings is not actually valid as
the effect of variable curvature of oval shell introduces coupling of the circumferential modes
corresponding to circular one. This was the reason why nominal circumferential wave numbers %n

has been introduced. The in-plane and transverse response behaviors of the oval shells under
different loads are also investigated. Further, wherever necessary, the results are obtained using
FSDT (eight-noded quadrilateral element with 5 d.o.f. per node, u0; v0; w0; yx; yy) for comparison
purpose. The material properties used, unless otherwise specified, are

Material 1 :E1=E2 ¼ 10; G12=E2 ¼ G13=E2 ¼ G23=E2 ¼ 0:5; n12 ¼ n23 ¼ n13 ¼ 0:25;

E2 ¼ 24:2307 GPa; r ¼ 2768 kg=m3:

Material 2 :E1=E2 ¼ 40; G12=E2 ¼ G13=E2 ¼ 0:6; G23=E2 ¼ 0:5; n12 ¼ n23 ¼ n13 ¼ 0:25;

a2=a1 ¼ 1125; E2 ¼ 109 N=m2; a1 ¼ 10�5=1C; r ¼ 1500 kg=m3;

where E; G; n and r are Young’s modulus, shear modulus, Poisson’s ratio and density. Subscripts
1, 2 and 3 refer to the principal material directions. All the layers are of equal thickness and the
ply angle is measured with respect to the x-axis (meridional axis). The spatial distributions of
loading considered here are

for thermal case: DT=T0 (2z/h) sin(px/L) cos(6py/C),
for internal pressure loading case: q=q0 sin(px/L) cos(6py/C).

The analysis of oval cylindrical shell can be studied considering four different classes of
spatially fixed asymmetric modes (SS, SA, AS, AA), depending on whether they are symmetric (S)
or antisymmetric (A) at the semi-major (y ¼ 0 or C=2), and the semi-minor (y ¼ C=4 or 3C=4)
axes. C is the total circumferential length of the shell. The details of boundary conditions for one-
eighth of the shell are:

simply supported edges:

v0 ¼ w0 ¼ yy ¼ w1 ¼ by ¼ G ¼ fy ¼ cy ¼ 0 at x ¼ 0;L;

along the lines of symmetry:

u0 ¼ yx ¼ bx ¼ fx ¼ cx ¼ 0 at x ¼ L=2;

v0 ¼ yy ¼ by ¼ fy ¼ cy ¼ 0 at y ¼ 0;C=4;

along the lines of antisymmetry:

u0 ¼ w0 ¼ yx ¼ w1 ¼ bx ¼ G ¼ fx ¼ cx ¼ 0 at y ¼ 0;C=4:

Based on progressive mesh refinement, a 16
 8 grid mesh (circumferential and meridional
directions) is found to be adequate to model the one-eighth of the shells (quarter in cross-section
and half in length) for the present analysis. Before proceeding to the detailed study, the present
formulation is tested considering problems for which solutions are available in the literature.
Table 1 shows the comparison of present results for thin composite oval shells with the analytical
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solution [12] and they match well. Since studies pertaining to thick laminated oval case are not
readily available, the solutions of fairly thick isotropic case are compared against those of
available analytical work [14] in Table 2. It can be noted here that the present finite element

Table 1

Comparison of non-dimensional frequencies O½¼ oRoðr=E1Þ
1=2	 for a two-layered cross-ply thin oval shell (Ro=h ¼ 100;

L=Ro ¼ 1; x ¼ 0:2; axial half-wave number m ¼ 1; Material 1)

Circum wave no. %n SS and SA modes AA and AS modes

Ref. [8] Ref. [12] Presenta Ref. [8] Ref. [12] Presenta

1 0.47023 0.47072 0.47038 0.41044 0.41044 0.41077

2 0.28660 0.28375 0.28324 0.29195 0.29195 0.29240

3 0.20680 0.20729 0.20674 0.20557 0.20557 0.20607

4 0.15844 0.15872 0.15799 0.15825 0.15825 0.15890

5 0.13000 0.13095 0.12987 0.12998 0.12998 0.13093

6 0.10950 0.11055 0.10934 0.10949 0.10949 0.11055

7 0.10865 0.10986 0.10834 0.10864 0.10864 0.10985

8 0.12365 0.12516 0.12332 0.12364 0.12364 0.12516

9 0.13905 0.14059 0.13861 0.13905 0.13905 0.14059

10 0.16227 0.16363 0.16175 0.16227 0.16227 0.16363

11 0.19099 0.19207 0.19043 0.19099 0.19099 0.19207

12 0.22400 0.22469 0.22343 0.22400 0.22400 0.22470

aFSDT and HSDT.

Table 2

Comparison of non-dimensional frequencies O2½¼ o2R2
oð1� n2Þr=E	 for fairly thick isotropic oval shell (L=Ro ¼ 6;

x ¼ 1:0; m ¼ 1; n ¼ 0:25)

Ro=h Circum. wave no. %n SS and SA modes AA and AS modes

Ref. [14] Present Ref. [14] Present

FSDTa PSDTb FSDTa HSDTc FSDTa PSDTb FSDTa HSDTc

13.33 0 0.5068 0.5067 0.50225 0.50224 — — — —

1 0.1702 0.1702 0.16942 0.16958 0.0931 0.0931 0.09252 0.09264

2 0.4798 0.4796 0.06656 0.06643 0.1502 0.0808 0.08018 0.07996

3 0.1597 0.1595 0.15916 0.15897 0.1609 0.1608 0.16056 0.16037

4 0.2884 0.2779 0.29421 0.29434 0.3028 0.2996 0.30009 0.30023

5 0.4853 0.4845 0.48591 0.48643 0.4847 0.4839 0.48535 0.48588

40.00 0 0.5067 0.5067 0.50210 0.04734 — — — —

1 0.1696 0.1696 0.16894 0.15928 0.1178 0.1177 0.11691 0.11019

2 0.4715 0.4714 0.03339 0.03146 0.1506 0.0595 0.05936 0.05595

3 0.0588 0.0587 0.05870 0.05531 0.0438 0.0438 0.04380 0.04129

4 0.1035 0.1035 0.10375 0.09778 0.0959 0.1040 0.10402 0.09804

5 0.1639 0.1638 0.16342 0.15407 0.1666 0.1665 0.16661 0.15708

aFirst order shear deformation theory (shear correction factor=p2/12).
bParabolic shear deformation theory.
cHigher order shear deformation theory without zig-zag function.
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solutions based on FSDT and HSDT for the thickness parameters considered here are, in general,
found to be in good agreement with the available study. However, it is further seen from Table 2
that, for antisymmetric vibration mode corresponding to the circumferential wave number %n equal
to 2, the results shown in Ref. [14] using FSDT differs significantly from those of parabolic model
even for thin situation. But the present results based on FSDT model are in very close agreement
to that of parabolic model [14]. Furthermore, for the symmetric mode of vibration case, the
solution for %n ¼ 2 given in Ref. [14] is very high compared to that of corresponding antisymmetric
case, whereas the difference obtained in the present study between symmetric and antisymmetric
cases is very less. It can be opined from the available literature that, for circular case, the
frequency values corresponding to symmetric and antisymmetric vibration cases are equal,
irrespective of circumferential wave number, whereas little difference can be noticed for the non-
circular case for the lower wave number (see for instance, Table 1). For thick laminated case, the
results evaluated based on HSDT are very close to those of three-dimensional finite element
solutions [31] compared to the performance of FSDT model as shown in Table 3.
Next, the effect of ovality parameter (x) on symmetry–symmetry (SS) and symmetry–

antisymmetry (SA) types of vibration modes is demonstrated in Fig. 2, assuming a two-layered
shell (01/901, L=Ro ¼ 0:5; Ro=h ¼ 5 and 20). It is observed from this figure that, for the given
nominal circumferential wave number %n; the discrepancy between corresponding frequencies

Table 3

Comparison of non-dimensional frequencies O½¼ oRoðr=E1Þ
1=2	 for a two- and eight-layered cross-ply thick oval shells

(Ro=h ¼ 6; x ¼ 0:8; m ¼ 1; Material 2)

No. of layers L=Ro Theory SS mode SA mode

First Second Third First Second Third

Two layer 0.5 FSDT 0.5215 0.5702 0.6730 0.5381 0.6102 0.6707

HSDT 0.4995 0.5483 0.6483 0.5160 0.5875 0.6583

3-D FEMa 0.4865 0.5390 0.6369 0.5063 0.5772 0.6537

1 FSDT 0.1976 0.2885 0.4690 0.2285 0.3195 0.3704

HSDT 0.1940 0.2812 0.4503 0.2239 0.3178 0.3581

3-D FEMa 0.1924 0.2776 0.4416 0.2216 0.3172 0.3521

6 FSDT 0.0487 0.2083 0.4266 0.0487 0.1194 0.3150

HSDT 0.0477 0.2005 0.4048 0.0487 0.1160 0.3007

3D FEMa 0.0472 0.1965 0.3951 0.0486 0.1141 0.2939

Eight layer 0.5 FSDT 0.6175 0.6820 0.8087 0.6401 0.7131 0.7373

HSDT 0.6105 0.6730 0.7977 0.6322 0.7094 0.7271

3-D FEMa 0.6064 0.6686 0.7911 0.6281 0.7077 0.7218

1 FSDT 0.2639 0.3863 0.5883 0.3100 0.3415 0.4831

HSDT 0.2609 0.3796 0.5782 0.3054 0.3405 0.4743

3-D FEMa 0.2601 0.3772 0.5727 0.3041 0.3403 0.4705

6 FSDT 0.0768 0.2896 0.5332 0.0501 0.1788 0.4131

HSDT 0.0746 0.2826 0.5225 0.0501 0.1742 0.4038

3D FEMa 0.0737 0.2799 0.5164 0.0501 0.1725 0.3996

aUsing ANSYS-5.6, 1997.
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ðO� ¼ 12o2R2
oð1� n13n21Þr=E1Þ based on FSDT and HSDT increases with the increase in the

circumferential wave number for the chosen displacement pattern. It is further noticed that, for
moderately thin oval shell (Ro=h ¼ 20), the circumferential wave number corresponding to the
fundamental mode ( %nmin) is same for all the values of ovality parameter considered here and
fundamental frequency value decreases with increase in ovality of the shell. However, for
circumferential wave number other than %nmin; the variation of frequency value depends on ovality
and thickness parameters. This is mainly attributed to the drastic change in the membrane/
bending energies of shell with the increase in the non-circularity. It is also seen that, for thick shell

Fig. 2. Non-dimensional frequency versus ovality parameter curves for two-layered cross-ply (01/901) oval shell

(L=Ro ¼ 0:5; m ¼ 1; Material 2): (a) Ro=h ¼ 5 and (b) Ro=h ¼ 20:
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(Ro=h ¼ 5), the rate of variation of the frequency parameter with ovality parameter is very less
with slight decrease/increase for lower/higher modes and the value of %nmin depends on the value of
ovality/non-circularity parameter.
The influence of length ratio on the frequency parameters is studied considering SS and SA and

AA and AS modes of vibrations of eight-layered thick/thin oval shells (L=Ro ¼ 0:5 & 5, Ro=h ¼ 5
and 20) and are shown in Tables 4 and 5. It can be opined from these tables that, although, with
the increase in the ovality parameter, the wave number corresponding to %nmin remains same, the
value of %nmin is different depending on the length parameters. It can be further inferred from these
tables that, with increase in ovality parameter, the rate of change in frequency is very less for the
higher nominal circumferential wave numbers. This is due to the increase in number of
circumferential nodes and, in turn, results in almost constant curvature between the nodes, even
though the eccentricity is large. It is seen from these tables that the frequency values, in general,
decreases with the increase in the values of non-circular parameter, except for very low nominal
circumferential wave number and/or the nominal circumferential wave numbers around the wave
number, %nmin corresponding to the lowest frequency values. Such observation can be noticed from
the tabulated results pertaining to elliptical shells in Ref. [32]. This is attributed to the geometrical
complexities because of ovality, thickness and length ratios. It, in turn, introduces significant
variation in the membrane and bending energies for the lower nominal circumferential wave
numbers whereas, for higher nominal circumferential wave numbers, it produces predominant
changes in the energies due to the coupling of various circumferential modes corresponding to
circular one. It can be observed by comparing the results given in these tables with Fig. 2 that the
frequency value increases with the increase in number of layers, as expected, due to the weakening
of bending–stretching coupling.
The analysis is also carried out to highlight the effect of variation of thickness ratio (Ro=h) on

the frequency characteristics of some class of vibration modes (SS and SA), considering a short
two-layered oval shell (01/901, L=Ro ¼ 0:5; x ¼ 0:33 and 0.96). The results are presented in Fig. 3.
It is inferred from this figure that, with the increase in the thickness, the frequency parameter
value increases for the chosen nominal wave number %n and the difference between the results
obtained using first and higher order models also increases. It is further seen that, for cylinder
with low ovality, the value of %nmin varies with respect to thickness parameter, whereas it is same
for very thick to fairly thick cases with high ovality.
Finally, the transient dynamic response analysis is conducted considering eight-layered cross-

ply thick oval shells [L=Ro ¼ 1; x ¼ 0:33 and 0.96, h ¼ 0:001m, (01/901)4] subjected to thermal
load (To ¼ 1). The variations of the transverse (w=h) and in-plane (v=h) displacements with time
predicted here are presented in Figs. 4 and 5 for two values of thickness parameter (Ro=h ¼ 5 and
10). It is observed from these figures that the maximum amplitude predicted by HSDT model is
significantly different from that of FSDT one, and it is even seen for higher thickness ratio case.
Furthermore, the transverse displacement obtained using HSDT exhibits high-frequency
oscillations because of the participation of thickness stretch modes arising from G term in the
transverse displacement field. In the case of in-plane displacement, along the circumferential
direction, the response characteristics evaluated using HSDT are somewhat qualitatively similar
to those of FSDT but the peak amplitudes are different.
Similar studies are conducted for the response characteristics of oval shell subjected to internal

pressure (qo ¼ 100). The results obtained for the eight-layered elliptical shells [L=Ro ¼ 0:5; Ro=h ¼
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5 and 10, x ¼ 0:33 and 0.96, (01/901)4] are described in Figs. 6 and 7. It is observed that the
responses predicted using FSDT and HSDT are noticeably different for thick case. However, this
difference in the response behavior vanishes with increase in the thickness ratio. The effect of
thickness stretching mode, introducing high-frequency oscillation for the transverse motion of
shells subjected thermal load, does not affect much the response history of shells under
mechanical load.

5. Conclusions

The free vibration characteristics and the transient dynamic response behaviors of laminated
cross-ply oval shells are analyzed using higher order displacement model. The effectiveness of the

Fig. 3. Non-dimensional frequency versus thickness ratio curves for two-layered cross-ply oval shell with: (a)x ¼ 0:33
(01/901, L=Ro ¼ 0:5; m ¼ 1; Material 2) and (b) x ¼ 0:96 (01/901, L=Ro ¼ 0:5; m ¼ 1; Material 2).
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present formulation over the first order theory is demonstrated through a parametric study. The
following observations can be made from the detailed analysis carried out here:

(i) The variation in the ovality parameter value can significantly alter the frequency values
depending on thickness and length ratios, and nominal circumferential wave number.

(ii) The difference between the corresponding frequency values obtained based on FSDT and
HSDT increases with the increase in the circumferential wave number and thickness parameter.

(iii) The eccentricity parameter can affect the nominal wave numbers corresponding to the
fundamental mode for the two-layered case compared to eight-layered one, depending on
thickness value.

Fig. 3 (continued).
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(iv) Coupling of circumferential modes, corresponding to circular case, is significant for eccentric
shell vibrating at modes with lower nominal circumferential wave numbers.

(v) The participation of high-frequency oscillation in the response history is observed in thermal
case.

Fig. 4. Response of eight-layered cross-ply (01/901)4 oval shell (Ro=h ¼ 5; L=Ro ¼ 1) subjected to thermal load:

(a) x ¼ 0:33 and (b) x ¼ 0:96:

Fig. 5. Response of eight-layered cross-ply (01/901)4 oval shell (Ro=h ¼ 10; L=Ro ¼ 1) subjected to thermal load:

(a) x ¼ 0:33 and (b) x ¼ 0:96:
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(vi) The influence of higher order model on the response characteristics of shells subjected to
thermal load is considerable, even for fairly thick situation, compared to the mechanical
loading case.

Fig. 6. Response of eight-layered cross-ply (01/901)4 oval shell (Ro=h ¼ 5; L=Ro ¼ 0:5) subjected to pressure load:

(a) x ¼ 0:33 and (b) x ¼ 0:96:

Fig. 7. Response of eight-layered cross-ply (01/901)4 oval shell (Ro=h ¼ 10; L=Ro ¼ 0:5) subjected to pressure load:

(a) x ¼ 0:33 and (b) x ¼ 0:96:
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Appendix A

The various submatrices involved in Eq. (5b) are

½Z1	 ¼

1 0 0 0 0

0
1

1þ z=R
0 0 0

0 0 1 0 0

0 0 0
1

1þ z=R
1

2
666666664

3
777777775
; ½Z2	 ¼ z½Z1	; ½Z3	 ¼

z2 0 0 0

0
z2

1þ z=R
0 0

0 0 0 0

0 0
z2

1þ z=R
z2

2
666666664

3
777777775
;

½Z4	 ¼ z½Z3	; ½Z5	 ¼

Sk 0 0 0

0
Sk

1þ z=R
0 0

0 0 0 0

0 0
Sk

1þ z=R
Sk

2
666666664

3
777777775
;

½Z6	 ¼
1 0

0 1

" #
; ½Z7	 ¼ z½Z6	; ½Z8	 ¼ z2½Z6	;

½Z9	 ¼ Sk
;z½Z6	; ½Z10	 ¼

0 0 0 0 0

1

1þ z=R

z

1þ z=R

z2

1þ z=R

z3

1þ z=R

Sk

1þ z=R

2
64

3
75; ðA:1Þ

fe1g ¼

u0;x

v0;y þ
w0

R

w1

u0;y

v0;x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; fe2g ¼

yx;x

yy;y þ
w1

R

2G

yx;y

yy;x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; fe3g ¼

bx;x

by;y þ
G
R

bx;y

by;x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

fe4g ¼

fx;x

fy;y

fx;y

fy;x

8>>>><
>>>>:

9>>>>=
>>>>;
; fe5g ¼

cx;x

cy;y

cx;y

cy;x

8>>>><
>>>>:

9>>>>=
>>>>;
; ðA:2Þ

M. Ganapathi et al. / Journal of Sound and Vibration 262 (2003) 65–8682



fe6g ¼
yx þ w0;x

yy

( )
; fe7g ¼

2bx þ w1;x

2by

( )
;

fe8g ¼
3fx þ G;x

3fy

( )
; fe9g ¼

cx

cy

( )
; fe10g ¼

w0;y �
v0

R

w1;y �
yy

R

G;y �
by

R

�
fy

R

�
cy

R

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ðA:3Þ

O1 and O2 are null matrices of size 4
 2 and 4
 5, respectively.

Appendix B. Nomenclature

B strain–displacement matrix
C total circumferential length
’de vector of the time derivatives of displacement field variables
E1;E2;E3 Young’s modulii
FM ;FT global mechanical and thermal load vectors
Fe

M ;Fe
T element level mechanical and thermal load vectors

G12; G23; G13 shear modulii
h total thickness of the shell
hk; hkþ1 z co-ordinates of the inner and outer surfaces of the kth layer
H interpolation matrix
k layer number
K ;M global stiffness and mass matrices
Ke;Me element level stiffness and mass matrices
L meridional/axial length of the shell
m axial/meridional half-wave number

%n nominal circumferential wave number

%nmin nominal circumferential wave number corresponding to fundamental fre-
quency

N number of layers
O1;O2 null-matrices
q distributed force acting on the bottom surface of the shell
qo amplitude of distributed mechanical load
Qk constitutive matrix of kth layer referred to the material principal directions
%Qk constitutive matrix of kth layer referred to the laminated shell axes

R principal radius of curvature in the circumferential direction
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Ro average radius of curvature of the middle-surface
Sk zig-zag function
t time
tk thickness of kth layer
T kinetic energy
To amplitude of temperature rise
uk; vk;wk displacements of kth layer along axial, circumferential and thickness

directions, respectively.
u0; v0;w0 reference surface displacements
UT total potential energy
w1;G higher order terms associated with displacement wk

x axial/meridional co-ordinate
y circumferential co-ordinate
z thickness/radial co-ordinate
zk local transverse co-ordinate with its origin at the center of the kth layer
Z matrix realting the velocity components of a generic point with time derivative

of de

%Z matrix relating the middle-surface strains with the strain at any point z
Zi ði ¼ 1;y; 10Þ sub-matrices of %Z matrix
a1; a2;a3 thermal coefficients in the material principal directions
ax; ay; az; axy thermal expansion coefficients in the shell co-ordinates
bx;fx higher order terms associated with displacement uk

by;fy higher order terms associated with displacement vk

d vector of the degrees of freedom/generalized co-ordinates
de vector of the elemental degrees of freedom/generalized co-ordinates, and
di ði ¼ 1;y; nÞ degrees of freedom/generalized co-ordinates
DT rise in temperature
e total strain
ebm bending and membrane strains
eiði ¼ 1;y; 10Þ middle-surface strain vectors
es transverse shear strains

%et thermal strain vector
exx; eyy; ezz normal strain components

%exx; %eyy; %ezz;
%exy; %exz; %eyz

�
components of thermal strain vector %et

gxy; gxz; gyz shear strain components
n12; n23; n13 Poisson ratios
yx; yy rotations of the normal to the middle-surface about the y- and x-axis,

respectively
rk mass density of the kth layer
s stress vector
o frequency
O;O2;O� non-dimensional frequency parameters
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x non-circularity/ovality parameter
cx;cy generalized variables associated with the zig-zag function, Sk

ð1Þ partial derivative with respect to time
ðÞ;x partial derivative with respect to x

ðÞ;y partial derivative with respect to y
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